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Concepts from the field of wave chaos have been shown to successfully predict the statistical

properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling

Model (RCM) describes these properties by incorporating both universal features described by

Random Matrix Theory and the system-specific features of particular system realizations. In an

effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-

doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical proper-

ties of the resulting second harmonic fields. We develop an RCM-based model of this system as

two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field

strengths are predicted to be the product of two statistical quantities and the nonlinearity character-

istics. Statistical results from measurement-based calculation, RCM-based simulation, and direct

experimental measurements are compared and show good agreement over many decades of power.

Published by AIP Publishing. https://doi.org/10.1063/1.4986499

The wave properties of systems that show chaos in the clas-

sical limit, and are large compared to the wavelength, are

extensively studied in the field of “wave chaos.” These sys-

tems are quite common in life, ranging from the small scale

of atomic nuclei, to mesoscopic quantum systems like quan-

tum dots, to macroscopic acoustic, microwave, optical sys-

tems, and even to ocean waves in the sea. The Random

Coupling Model (RCM) is a well-established theory that

describes the statistical wave scattering properties of these

wave chaotic systems. A two-dimensional 1/4-bowtie micro-

wave billiard is one example of a wave chaotic system that

has been studied experimentally and numerically.

Microwave experiments in these billiards have demon-

strated the accuracy of the RCM. However, prior work has

been confined to linear systems, and has not taken into

account nonlinearity in the wave properties, which is

potentially important. By adding an active circuit that gen-

erates second harmonics to the 1/4 bowtie-billiard, this

work is the first step in trying to generalize the RCM to

nonlinear systems, specifically by focusing on the second

harmonic field statistics. An extended RCM model that

includes the characteristics of the nonlinear element shows

very good agreement with the experimental results.

I. INTRODUCTION

The scattering of short-wavelength waves in domains in

which the corresponding rays are chaotic (known as wave

chaos) has inspired research activities in many diverse con-

texts including quantum dots,1,2 atomic nuclei,3 optical cavi-

ties,4 microwave cavities,5–7 acoustic resonators,8,9 and

others. In this case, the response is extremely sensitive to the

domain’s configuration, the driving frequency, and ambient

conditions such as temperature and pressure.10 Numerical

solution of the detailed response of a particular system is

computationally intensive and does not necessarily provide

much insight into other systems which are slightly different.

This leads to the adoption of a statistical description.

It is hypothesized that the wave properties of classically

chaotic billiard systems show universal statistical properties

described by the Random Matrix Theory (RMT).11–13 The

statistics depend only on general symmetries, inlcuding the

presence or absence of time-reversal invariance and spin-1/2

degree of freedom, and on the degree of loss. In the field of

“wave chaos,” Random Matrix Theory (RMT) has been

shown to successfully describe many statistical properties of

bounded wave-chaotic systems (e.g., enclosures such as elec-

tromagnetic cavities), including their eigenvalue spectra,

eigenfunctions, scattering matrices, delay times, etc.13–20

Wave systems also have system-specific features that modify

the underlying universal fluctuations. The Random Coupling

Model (RCM) accounts for those non-universal features such

as the details of ports coupling waves into and out of the

domain of the cavity, short orbits that exist between the ports,

and specific persistent features of the enclosure in an ensemble

of similar but different realizations of a system.21–23

Experimentally, the system-specific features are captured by

the impedance (reaction matrix)24 averaged over an ensemble

of realizations. By applying this technique to remove non-

universal properties, the RMT statistical properties have been

uncovered in experimental data on ray chaotic 1D quantum

graphs,25 2D electromagnetic cavities (known as billiards),26

and 3D cavities [e.g., reverberation chambers (RC)].27

Based on the success of the RCM, it is of interest to

explore directions extending its generality. Along this line,

theories have been developed for “mixed” systems which

include both regular and chaotic ray dynamics,28 and for net-

works of coupled cavities in which waves propagate from
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one sub-system to another.29,30 While such previous exten-

sions have focused on linear systems, it is of great interest to

see how nonlinearity would modify the RCM. The present

paper is meant to serve as a first step towards a nonlinear

generalization of the RCM by examining the statistics of

nonlinearly generated harmonic signals.

Nonlinearity has arisen before in the study of wave chaos.

For example, rouge waves can appear in wave chaotic scatter-

ing systems.31,32 They appear in different physical contexts and

are enhanced by nonlinear mechanisms.33,34 In acoustics,

Time-Reversed Nonlinear Elastic Wave Spectroscopy (TR/

NEWS) is based on the nonlinear time reversal properties of a

wave chaotic system.35 TR/NEWS is proposed as a tool to

detect micro-scale damage features (e.g., delaminations, micro-

cracks or weak adhesive bonds) via their nonlinear acoustic sig-

natures.36,37 Applying this idea to electromagnetic waves,38 the

nonlinear electromagnetic time-reversal mirror shows promise

for novel applications such as exclusive communication and

wireless power transfer.39,40 A theoretical study of stationary

scattering from quantum graphs has been generalized to the

nonlinear domain, where the nonlinearity creates multi-stability

and hysteresis.41 A wave-chaotic microwave cavity with a non-

linear circuit feedback loop demonstrated subwavelength posi-

tion sensing for a perturber inside a cavity.42 Furthermore,

investigation of the electromagnetic field statistics created by

nonlinear electronics inside a wave chaotic reverberation cham-

ber has a number of applications, including electromagnetic

immunity testing of digital electronics.43,44

In this work, an active nonlinear circuit is added to a

ray-chaotic microwave billiard. The billiard, shown schemat-

ically in Fig. 1, has an area of A ¼ 0.115 m2, with a corre-

sponding characteristic length of A1=2 ¼ 0:34 m. For the

microwave wavelengths used here (3� 9 cm), the billiard is

assumed to be large compared to the wavelength (electrically

large enclosure) and is considered to be in the semiclassical

or short-wavelength limit. The cavity has a height of

d¼ 7.9 mm. Thus, below a frequency fmax ¼ c=ð2dÞ ¼ 18:9
GHz, it is a quasi-2D billiard in which the electric field is

polarized in the short direction, and the magnetic field is in

the 2D plane of the cavity. For frequencies 2f > 7 GHz, the

mode number is above �200 and it can be considered that

the cavity is in the highly over-moded regime (where there

are many cavity modes at and below the frequency of inter-

est).6 The cavity has internal loss, giving rise to a finite qual-

ity factor (Q) for the resonant modes of the closed system.

We shall assume that a single Q describes the losses in a

given range of frequency.45 The nonlinear circuit accepts

input at a particular frequency and generates and amplifies

second harmonic output which is fed back into the billiard.

We study the statistics of the second harmonic fields in the

cavity for a fixed power at the input fundamental frequency.

II. BACKGROUND AND EXPERIMENTAL SETUP

In the case of a linear ray-chaotic cavity with N ports,

the Random Coupling Model characterizes the fluctuations

in the impedance Z and scattering S matrices. The scattering

and impedance matrices are related by a simple bilinear

transformation46

S ¼ Z
1=2

0 ðZ þ Z 0Þ�1ðZ � Z 0ÞZ
�1=2

0 ; (1)

where Z 0 is a real diagonal matrix whose elements are the

characteristic impedances of the waveguide (or transmission

line) input channels at the driving ports. The statistical prop-

erties of the cavity impedance Z cav are described by a univer-

sally fluctuating impedance n that is ‘dressed’ by system-

specific properties captured by the ensemble average imped-

ance Z avg as

Z cav ¼ i � ImðZ avgÞ þ ReðZ avgÞ
h i1

2

� n � ReðZ avgÞ
h i1

2

; (2)

where Z avg is an average of impedance over an ensemble of

cavity realizations and(or) frequencies. Z avg contains the sys-

tem specific features including the radiation impedance of the

ports and short orbits that survive the ensemble averages.21–23

The “radiation impedance” represents the impedance mea-

sured at the ports of the scattering enclosure in the case that

the waves are allowed to enter the enclosure through the port

but not return, as if they were absorbed in the enclosure or

radiated to infinity. Experimentally, it can be measured with

the empty bowtie billiard whose boundary is covered with

perfect microwave absorbers. A “short orbit” is a ray trajec-

tory that leaves a port and soon returns to it, or another port,

instead of ergodically sampling the system. It is the result of

the port-port interaction that introduces deterministic field

components which can remain fixed throughout the ensem-

ble.23 Z avg can also be estimated if the radiation impedance of

the ports and the cavity shape are known.21

By inverting Eq. (2) and subtracting the non-universal

features from Z cav in each realization, one can uncover a sta-

tistically fluctuating quantity that should correspond to n . It

has been hypothesized that all sufficiently complex wave

chaotic systems have universal impedance fluctuations

FIG. 1. Experimental setup: 1/4-bowtie cavity with an active nonlinear cir-

cuit. (a) The vector network analyzer (Model: Keysight PNA N5242A or

E8364C) measures the absolute power of harmonics at port 2 relative to the

input fundamental tone at port 1. (b) The active nonlinear circuit consists of

two cascaded 3.5 GHz–4.5 GHz band pass filters (Mini-Circuit VBFZ-4000-

Sþ), a frequency doubler (Mini-Circuit ZX9C-2–50-Sþ), two cascaded high

pass filters (Mini-circuit VHF-6010þ), a wide band power amplifier

(HP83020A), and an isolator (FairviewMicrowave SFI 0418).
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described by the Random Matrix Theory (RMT).11–13

According to the theory, for a two port system47,48

nrmt;a;b ¼
XM

m¼1

WamWbm

krmt
m � ia

: (3)

The element nrmt;a;b is the impedance between port a and port

b, and the sum is over the M eigenmodes of the closed wave

scattering enclosure, Wam (or Wbm) represents the coupling

between the port a (or the port b) and the mth eigenmode.

Based on the assumption of the random plane wave hypothe-

sis (the Berry hypothesis), for a wave-chaotic cavity enclo-

sure filled with reciprocal media (i.e., that has time-reversal

invariance), Wam and Wbm are independent Gaussian random

variables of zero mean and unit variance.47 krmt
m is the mth

eigenvalue of a large random matrix. The statistics of these

eigenvalues are based on RMT, and they are found from a

large random matrix selected from the GOE (Gaussian

Orthogonal Ensemble) for the time-reversal-invariant case.

The details of generating krmt
m are discussed in Appendix A

of Ref. 50. The loss parameter a is the only parameter deter-

mining the statistics of the universal fluctuations. In the case

of a two-dimensional billiard the loss parameter is given by

a ¼ k2A=ð4pQÞ and can be interpreted as the ratio of the typ-

ical 3-dB bandwidth of the resonant modes to the mean spac-

ing in frequency between the modes. k ¼ 2pf=c is the wave

number of frequency f, A represents the area of the billiard,

and Q is the typical loaded quality factor of the enclosure

under the assumption that losses are uniform.

The algorithm for generating n rmt can be developed

based on Eq. (3). By varying a, the universal statistics of n
for systems with varying losses can be numerically gener-

ated, and examples of these distributions are given in Ref.

49. Starting with a statistical ensemble data set and going the

other way around, one can fit the experimentally extracted n
to n rmtðaÞ, and the best matching distributions will give an

estimate of the loss parameter of the experimental system.

Note that when examining data, for a two port system, n can

produce 8 histograms, i.e., real and imaginary part for each

element na;b. However due to the reciprocity of the system,

n12 ¼ n21, and n11 has the same statistics as n22 according to

Eq. (3). As a result there are 4 unique histograms that are

simultaneously fit using a single loss parameter a.

Experimental tests in various wave chaotic systems have sys-

tematically explored the effects of different loss parameters

on the statistical properties of impedance, ranging from cryo-

genic superconducting cavities (a � 0:01Þ50,51 to three-

dimensional complex enclosures (a > 10).27

Here, a symmetry-reduced “1/4-bowtie” shape (Fig. 1)

quasi-two-dimensional cavity at room temperature is used as

the ray chaotic system.6 To introduce nonlinearity, an active

nonlinear circuit is connected to two ports of the billiard as

shown in Fig. 1. The active nonlinear circuit is designed to

double the input frequency in the range from 3.5 GHz to

4.5 GHz; other harmonics, as well as the fundamental tone, are

suppressed at the output. Measurements are taken between two

additional ports of the cavity, and an ensemble of billiard real-

izations is created by moving two perturbers throughout the

cavity. Thus, the realizations maintain a fixed volume and

mean mode spacing. A sinusoidal tone at fundamental fre-

quency 1f with a certain power is created in the Vector

Network Analyzer (VNA) and injected through port 1. Port 3

is the input of the active nonlinear circuit. Due to the ray-

chaotic properties of the cavity, the 1f signal received by port 3

varies over several decades in power as a function of frequency

and perturber locations. The output at port 4 will be at the 2nd

harmonic frequency with a certain power. Port 4 serves as the

source of a 2f signal injected into the cavity. The VNA is set in

the Frequency Offset Mode (FOM), which provides the capa-

bility to have the VNA sources apply a tone at one frequency

and the receivers measure the response at any other frequency.

In our case, the VNA port 2 measures the absolute power of

the 2nd harmonics of the stimulus from port 1.

III. MODEL

We separately characterize the nonlinear circuit under

FOM and find that for input powers in the range �45 dBm to

�5 dBm, Pout;2f vs:Pin;1f obeys a simple empirical relation:

Pout;2f ¼ slope � Pin;1f þ intercept dBmð Þ; (4)

where slope ¼ 2:0060:01 and the amplifier contributes to

the “intercept” term. Note that power P is in dBm and the

“intercept” here refers to intercept in units of dBm, i.e.,

Pout;2f when Pin;1f ¼ 0 dBm. In terms of power measured in

Watts, since PdBm ¼ 10 logð103 � PWÞ, Eq. (4) is effectively

Pout;2f ¼ P2
in;1f � Pnorm, where Pnorm ¼ 106 � Pintercept, and

Pintercept is intercept converted into units of Watts.

To describe the statistical properties of the second har-

monic signals measured at port 2, a model of two cascaded

linear cavities connected through the nonlinear circuit is pro-

posed (see Fig. 2). This choice was motivated by earlier

work on the statistics of impedance and power fluctuations

in chains of wave chaotic cavities connected by weak but lin-

ear coupling.29,30,45 As shown in Fig. 2, the source signal

enters the cavity from port 1. The signal reaching port 3,

which is the input of the nonlinear circuit, is given by the lin-

ear transmission S-parameters between port 1 and 3, denoted

by S13. Its statistics are described by the linear Random

Coupling Model at 1f with loss parameter a1. The output sig-

nals of the nonlinear circuit at port 4 are at the 2nd harmonic

of the input at port 3. Their relation is characterized by the

empirical law of the active nonlinear circuit, Eq. (4). Lastly,

the 2nd harmonic signals received at port 2 are linearly

related to the 2nd harmonic signals introduced at port 4,

which is given by the statistical fluctuations of the transmis-

sion S-parameters between port 2 and port 4 denoted by S24.

The statistics of S24 are described by the linear Random

Coupling Model at frequency 2f with loss parameter a2.

Since the vector network analyzer in FOM measures power,

we have a simple relation for the power of 2nd harmonics

received at port 2,

Pout;2f ¼ ðPin;1f � jS13j2Þ2 � Pnorm � jS24j2 ðWattsÞ; (5)

where Pin;1f , Pnorm are deterministic, in units of Watts; and

jS13j2; jS24j2 are fluctuating quantities.
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IV. RESULTS

In the results shown below, there are 136 realizations for

Pin;1f ¼ �5 dBm input, 99 for 0 dBm, and 91 forþ5 dBm,

respectively. For each realization, the VNA outputs a 1f sig-

nal sweeping from 3.5 GHz to 4.5 GHz with fixed power at

port 1, which is Pin;1f . With the FOM one then measures the

response 2nd harmonics at port 2, Pout;2f . For each 1f input

power, the histograms of power values of Pout;2f are com-

piled over the ensemble of realizations as well as the second

harmonic frequency between 7 and 9 GHz. These histograms

of the measured 2nd harmonic power are plotted in Fig. 3

and will be compared with theory predictions.

To test the extended RCM model, we have two

approaches. The “measured product” is a calculation based

on separate measurement of each linear component, i.e.,

measurements of S13; S24. S-parameters between ports 1 and

3 are measured at 3.5–4.5 GHz, for 120 realizations of the

positions of the perturbers. The S-parameters between ports

2 and 4 are measured at 7–9 GHz, again for 120 different

realizations of the perturber positions. In the direct experi-

mental measurement of the 2f signal with the 1f input, the 1f
and 2f signals pass through the cavity with the same per-

turber position. However, in the “measured product,” the S-

parameters S13 and S24 are measured independently, each

with a separate ensemble of perturber positions. Their values

will not correspond directly to those in the case in which the

entire transfer function is characterized. Statistically, the his-

tograms for the “measured product” and “experiment” will

correspond if S13 and S24 are effectively independent. By

putting the measured quantities into the relation Eq. (5), we

create 1202 “realizations” of Pout;2f . We call this a “super

data set” and its P2f statistics can be compared with those

measured directly.

Another approach, termed “simulation,” utilizes the

RCM to generate a prediction for the statistical distribution

of power values. By using the measured ensembles of

S13ð1f Þ mentioned above, Z avg;13ð1f Þ can be derived by

averaging over realizations. The RCM formulation [Eq. (2)]

is applied to extract nð1f Þ from the ensemble data. By fitting

the histograms of nð1f Þ, the loss parameter a1 between

3.5 GHz and 4.5 GHz is estimated. In practice, for each fre-

quency window of 0.5 GHz, the loss parameter a1 is deter-

mined as the average loss parameter obtained from fitting the

histograms of the off-diagonal impedance elements

Refn12ð1f Þg and Imfn12ð1f Þg. The same procedures are

applied to the measured ensembles of S24ð2f Þ to derive

Z avg;24ð2f Þ and a2 between 7 and 9 GHz. Having the Z avg

and loss parameters in the two frequency ranges of interest,

we can perform Monte Carlo RMT simulations based on Eq.

(3) to firstly get normalized impedance n , then to generate

ensembles of S13 and S24 using RCM [Eqs. (2) and (1)]. This

approach can be considered as a validity test of the RCM.

Again, we generate 120 realizations of S13 and S24 respec-

tively, and substitute them into Eq. (5) to create a “super

FIG. 2. Model of the nonlinear billiard

in terms of cascaded cavities. The

bowtie with an active nonlinear circuit

attached can be considered as two lin-

ear billiards operating at different fre-

quencies and loss parameters coupled

through the nonlinear circuit.

FIG. 3. Measurement of second harmonic power statistics and test of the

model of cascaded cavities. (a) The statistics of the output 2nd harmonic

power predicted by the model are compared with the direct measurement

results (blue). The statistics are compiled over a 2 GHz range with a center

frequency of 8 GHz. (b) Three input powers are measured: �5 dBm, 0 dBm,

andþ5 dBm, and the distributions are shifted by 610 dBm (610 dBm) to

overlap. The cutoff near 0 dBm for theþ5 dBm curve comes from the satu-

ration of the VNA (Model E8364C). For Pin;1f ¼ �5 dBm, 0 and 5 dBm, the

mean value is �33.6 dBm, �23.6 dBm and �14.3 dBm, respectively. The

standard deviations are 14.6 dBm, 14.8 dBm, and 14.4 dBm, respectively.
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data set” prediction for the histogram of Pout;2f . The result is

based on simulated universal quantities “dressed” by the

measured non-universal features.

The loss parameters a at 1f and 2f are both less than 1.

In such a low loss chaotic environment, the individual cavity

mode contributions to the S-parameters will be sharp and

distinct. The value of Pin;1f at port 1 is set so that the major-

ity 1f power at port 3 falls within the range where Eq. (4)

holds. As a result, the power of the second harmonic signal

spans a wide range. Figure 3 shows histograms of the second

harmonic power plotted on a log scale with units of dBm.

The histogram is compiled from an ensemble of realizations

and over a 2f output frequency range from 7 to 9 GHz. For a

fixed input power over a certain frequency band, the 2nd har-

monic output power varies over 8 – 10 decades. For exam-

ple, Fig. 3(a) shows the result for input power Pin;1f ¼ �5

dBm. The blue curve is the histogram from direct measure-

ment, where the received power of the 2nd harmonics varies

from �100 dBm to 0 dBm. It has a mean of �14.3 dBm and

a standard deviation of 14.4 dBm. The red curve is the

“measured product,” also derived from measurement.

Although derived by a different approach, the overall statis-

tics agrees very well with our direct measurement of the sec-

ond harmonic power. The black curve labeled “simulation”

is created based on the RCM as described above, and as

shown in the plots, it agrees quite well with the red and blue

curves, demonstrating the validity of the Random Coupling

Model.

To quantify the agreement, the coefficient of determina-

tion R2 traditionally used in statistics is calculated for each

model histogram with respect to the experimental curve. R2

is always between 0 and 1 and is interpreted as the percent-

age of variation in the response variable that is explained by

the linear model.52 In general, the higher the R2, the better

the model fits to the data. The red curve “measured product”

has R2 ¼ 0:995 and the black curve “simulation” has

R2 ¼ 0:994, both indicating very good agreement. We

emphasize that this model yielding this agreement has no fit-
ting parameter.

The model [Eq. (5)] predicts that changing the input

power should simply shift the PDFs of Pout;2f by 10 dB for

each 5 dB increase in input power. Figure 3(b) shows the

shifted curves of the experimental results with respect to the

0 dBm case. Indeed the overall distribution has a similar

shape for each input power. However, experimentally the

VNA reaches its maximum detectable power at nearly

15 dBm. This is why there is a cutoff at high power for the

curve of Pin;1f ¼ 5 dBm. The results of RCM-based model

fits to the second harmonic statistics for input power

Pin;1f ¼ 0 and 5 dBm are shown in the supplementary

material.

V. FURTHER ANALYSIS AND DISCUSSION

Prior work44 has investigated second harmonic genera-

tion by nonlinear electronics irradiated in a reverberation

chamber (RC). This situation involves a “bare” nonlinear

source without filtering or amplification, producing a small

nonlinear response with a low signal-to-noise ratio. The

statistics of the re-radiated harmonic spectrum were investi-

gated by using a model of cascaded random processes.

Under the assumption that the distribution of the linear field

statistics in the reverberation chamber follow a Rayleigh dis-

tribution, a combined Rayleigh distribution was derived for

the statistics of the harmonics.44 However, it has been shown

that the Rayleigh distribution of the field statistics in a cavity

is only valid in the high-loss regime (loss parameter

a� 1).53,54 By introducing microwave absorbers into the

perimeter of the billiards26,55 or putting the billiard in a dry

ice low temperature environment, we are able to tune the

loss parameter a from 0.1 to 6 or higher. We show in the sup-

plementary material that the Rayleigh model for linear S-

parameter statistics fails in the low loss environment,

although the RCM is still valid (supplementary material). As

a result, the RCM-based model shows much better agree-

ment with the 2nd harmonic field statistics than the com-

bined Rayleigh model. Further, a more versatile “Double

Weibull” model was developed that takes into account the

saturation of the nonlinear element.56,57 The fitting parame-

ter in this model is directly related to the nonlinear exponent

[slope in Eq. (4)]. The combined Rayleigh distribution is a

special case of a “Double Weibull” model with n¼ 2, and

the “Double Weibull” model assumes that n< 2 as the non-

linear element saturates. Our results show that the fitting

parameter changes dramatically with loss in the billiard (for

a fixed nonlinear transfer function slope¼ 2), and that the

values are un-physical in the low loss case. The detailed

results are given in the supplementary material. In the engi-

neering context, testing a bare nonlinear element in an RC

has applications for EMC (electromagnetic compatibility)

immunity testing. Those models work well in RC settings

where the loss parameter a� 1, but have not been tested in

a low-loss setting such as those in our experiments. The

RCM-based model holds in both high loss and low loss

cases, without any fitting parameters, and thus we conclude

that the RCM-based model is a more accurate and physically

realistic description of the system.

VI. CONCLUSIONS

In summary, by adding an active nonlinear circuit to the

ray-chaotic 1/4-bowtie cavity, and extending the Random

Coupling Model, it is possible to predict the statistics of har-

monics in a nonlinear wave chaotic system. The model of

nonlinear cascaded cavities Eq. (5), which incorporates non-

linearity into the Random Coupling Model, describes the

effects of the active nonlinear circuit, and is valid both in the

low loss and high loss regimes. This is the first effort to

extend the RCM to the nonlinear domain. It is shown to be

more general compared to previous models of similar phe-

nomena. The model does not require any fitting parameters

although a fair amount of independently-determined system-

specific information is incorporated into the model. The arti-

ficially fabricated nonlinear circuit is uni-directional, filtered,

and amplified to produce only 2nd harmonics, making the

system simple to analyze. It paves the way for generalizing

RCM to more complicated nonlinear situations. It also offers
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an approach to nonlinear problems in acoustic, optical,

atomic, and other chaotic systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for: (I) results of the

extended RCM model [Eq. (5)] fits to second harmonic

power statistics of input power Pin;1f ¼ 0 dBm andþ5 dBm,

respectively. (II) Results of comparison with other models

(Rayleigh model to linear fields, Combined Rayleigh, and

Double Weibull model to second harmonic fields).
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